A Spectroscopic and Theoretical Study of the Reactions of Group 6 Metal Atoms with Carbon Dioxide

Philip F. Souter and Lester Andrews*
Contribution from the Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901

Received April 1, 1997^{*}

Abstract

Group 6 metal atoms, generated by laser ablation, react with CO_{2} to give the insertion products OMCO and $\mathrm{O}_{2} \mathrm{M}(\mathrm{CO})_{2}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}$, or W$)$ which have been isolated in argon matrices and identified by the effects of isotopic substitution on their infrared spectra. These assignments have been supported by DFT calculations, and the theoretical and experimental spectra are in excellent agreement. Other products include the molecules $\mathrm{O}_{2} \mathrm{MCO}$, MO, and MCO and the CO_{2} complex $\operatorname{Cr}\left(\eta^{1}-\mathrm{OCO}\right)$ which, upon irradiation with UV-light, will photoisomerize to give OCrCO , an interesting example of photoactivation of CO_{2}.

Introduction

Carbon dioxide is a naturally abundant carbon source that has been implicated as a contributor to the predicted global warming often referred to as the "greenhouse effect". The most important CO_{2} activation process is photosynthesis, but little is known about the mode of ligation of the CO_{2} to the metal ion present in the active enzyme. The interaction between CO_{2} and transition metal centers is receiving increased attention ${ }^{1-4}$ as the possibilities of recycling CO_{2} generated in industrial emissions ${ }^{5}$ and also of replacing petroleum with carbon dioxide as the starting material for the synthesis of fine chemicals ${ }^{6}$ both represent exciting and important goals. Previous studies of the interaction of metal atoms with CO_{2} in low-temperature matrices focused on the interaction of $\mathrm{Li}^{7}{ }^{7} \mathrm{Cs}^{8}{ }^{8}$ and Al^{9} with CO_{2}. Additionally the interaction of several of the thermally generated first-row transition metal atoms, including Cr , with CO_{2} has been investigated both experimentally in solid $\mathrm{CO}_{2}{ }^{10}$ and theoretically. ${ }^{11}$ In this laboratory, the reactions of laser-ablated $\mathrm{B}, \mathrm{U}, \mathrm{Ti}$, and Be atoms with CO_{2} have been investigated, and all four were found to insert into CO_{2} to give OMCO $(\mathrm{M}=\mathrm{B}$, U, Ti, or Be) as the primary reaction product. ${ }^{12-15}$ Much attention has been devoted to the organometallic chemistry of CO_{2} and a comprehensive review has recently been published. ${ }^{4}$ The main problem with the chemistry of CO_{2}, lies in its inherent

[^0]thermodynamic stability, and methods of "activating" CO_{2} are consequently actively being sought.

We have studied the reactions between laser-ablated group 6 metal atoms and $\mathrm{CO}_{2} / \mathrm{Ar}$ mixtures and have trapped the reaction products, including OMCO and $\mathrm{O}_{2} \mathrm{M}(\mathrm{CO})_{2}$, in argon matrices and identified them by the effects of isotopic substitution upon their infrared spectra. These assignments have been confirmed by comparison between the experimentally observed frequencies, relative intensities, and isotope ratios and those predicted by DFT-based calculations. A preliminary communication on this work has appeared. ${ }^{16}$

Experimental Section

The technique used for matrix investigation of the reactions of pulsed laser-ablated metal atoms has been detailed previously. ${ }^{12-15,17,18}$ FTIR spectra were recorded on a Nicolet 550 at $0.5 \mathrm{~cm}^{-1}$ resolution. Typically mixtures of between 0.5% and 2% carbon dioxide in argon were deposited at a rate of $c a .3 \mathrm{mmol} / \mathrm{h}$ for $1-2 \mathrm{~h}$ onto a CsI window held at $6-7 \mathrm{~K}$ while the metals were ablated using $30-50 \mathrm{~mJ}$ pulses of YAG 1064 nm fundamental. After deposition the samples were annealed to 20 K , photolyzed using a 175 W mercury street lamp (Philips H39KB) with the globe removed ($240-580 \mathrm{~nm}$ range), and then further annealed, typically to 30 and 35 K .
$\mathrm{C}^{18} \mathrm{O}_{2}$ was synthesized either by heating graphite with ${ }^{18} \mathrm{O}_{2}$ (Yeda) in a quartz tube or, more efficiently, by discharging a $2: 1$ mixture of $\mathrm{C}^{18} \mathrm{O}$ and ${ }^{18} \mathrm{O}_{2}$ in a 3 L glass bulb with an attached finger held at 77 K to trap the $\mathrm{C}^{18} \mathrm{O}_{2}$ thus formed. The latter reaction proved to be essentially quantitative after 15 min and was also used to synthesize a 1:2:1 mixture of $\mathrm{C}^{16} \mathrm{O}_{2} / \mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O} / \mathrm{C}^{18} \mathrm{O}_{2}$ from a $2: 1$ mixture of $\mathrm{C}^{18} \mathrm{O}$ and ${ }^{16} \mathrm{O}_{2}$. The isotopic carbon dioxide samples thus produced were freed from any residual traces of oxygen, ozone, or carbon monoxide by pumping on the sample at $c a .135 \mathrm{~K}$. Samples of CO_{2} (Matheson) and ${ }^{13} \mathrm{CO}_{2}$ (Cambridge Isotopes) were used without further purification (the ${ }^{13} \mathrm{CO}_{2}$ sample contained $c a .10 \%{ }^{18} \mathrm{O}$).

Theoretical Section

DFT calculations were performed using both the Amsterdam Density Functional Code (ADF 2.0.1) ${ }^{19}$ and Gaussian 94^{20} suite of programs. The ADF calculations employed the Vosko-Wilk-Nusair potential in the context of the local density approximation (LDA), along with the Becke (B) and Perdew

[^1](P) gradient corrections to the exchange and correlation energies. Nonlocal gradient corrections were explicitly accounted for in each SCF cycle. ADF employs a series of Slater basis functions, and the adjustable parameter controlling the accuracy of the numerical integration ${ }^{21}$ was set at a value of either 5.0 or usually 6.0. A triple ζ basis set was used for the metals, and a triple ζ basis set with polarization was used for carbon and oxygen. Additionally for both molybdenum and tungsten the core electrons were frozen up to the 3 d and 5 p levels, respectively, to treat relativistic core effects. Quasirelativistic corrections were employed using the Pauli formalism with corrected core potentials. The quasirelativistic frozen core shells were generated using the auxiliary program DIRAC. ${ }^{19}$ The resultant approach has been shown to improve results considerably over first-order treatments. ${ }^{22,23}$

Geometry optimizations and frequency calculations were also run using the Gaussian 94 suite of programs. These too utilized a DFT-based approach with the Becke 1988 exchange functional (B) and Perdew correlational functional (P86). For oxygen and carbon the Dunning/Huzinaga full double ζ basis sets were used with one added polarization function (D95*). For chromium, molybdenum, and tungsten the Los Alamos ECP plus DZ basis sets were chosen (LanL2DZ). Optimized energies, geometries (all quoted bond lenths in angstroms and angles in degrees), frequencies, and the effects of isotopic substitution upon these frequencies were calculated, and the values of $\left\langle S^{2}\right\rangle$ indicate minimal artificial spin contamination in these calculations.

Results and Discussion

Figures 1-3 show the infrared spectra of the products generated by the reaction of laser-ablated Cr, Mo, and W atoms, respectively, with $2 \% \mathrm{CO}_{2}$ in Ar mixtures isolated at $6-7 \mathrm{~K}$, together with the effects of annealing and broad band UVphotolysis on these deposits. Figures 4-6 show the effects of isotopic substitution upon the infrared spectra of such matrixisolated deposits arising from the reactions of Cr, Mo, and W , respectively, with CO_{2} in Ar. The frequencies of the observed bands from the reactions of CO_{2} and its various isotopomers with Cr , Mo and W , together with their proposed assignments are presented in Tables 1-3.

In the ensuing section, for each molecule the experimentally observed frequencies $\left(\mathrm{cm}^{-1}\right)$ are quoted in parentheses and those separated by a semicolon refer to the values observed for chromium, molybdenum, and tungsten, respectively. For both chromium and molybdenum some of the observed bands showed fully resolvable isotopic splittings due to the natural abundances of the metal isotopes, and the quoted numbers in the text refer to the values observed for ${ }^{52} \mathrm{Cr}$ and ${ }^{98} \mathrm{Mo}$. In all experiments CO or its appropriate isotopic forms were observed as well as the CO_{2} complex of CO , which appears as a shoulder at slightly higher frequency. ${ }^{15}$

OMCO. The dominant product from the reactions of group 6 metal atoms with $0.5 \% \mathrm{CO}_{2} / \mathrm{Ar}$ mixtures is the direct insertion
(20) Gaussian 94: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A., Gaussian Inc., Pittsburgh, PA, 1995.
(21) teVelde, B.; Baerends, E. J. J. Comput. Phys. 1992, 99, 84 and references cited therein.
(22) Ziegler, T. Calculations of bond energies in heavy element compounds. Ph.D. Thesis, Vrije Universiteit, Amsterdam, 1987. Heinemann, C.; Cornehl, H. H; Schroder, D.; Dolg, M.; Schwarz, S. Inorg. Chem. 1996, 35, 2463.
(23) Ziegler, T. Chem. Rev. 1991, 91, 651.

Figure 1. Infrared spectra of the matrix-isolated products from the reaction of laser-ablated Cr with $2 \% \mathrm{CO}_{2}$ in argon after (a) 1 h of deposition, (b) annealing to 20 K , (c) broad band UV-photolysis, (d) annealing to 30 K , and (e) annealing to 35 K .
product OMCO. Full details are given in Tables $1-3$ for all three metals which behave in an analogous fashion. The two most intense bands for the OMCO molecule are the CO (2014.4, 1847.0, 1879.0) and MO (866.3, 951.8, 969.6) stretching fundamentals. Experiments run with ${ }^{13} \mathrm{CO}_{2}$ (1969.7, 866.3; 1804.3, 952.4; 1837.0, 969.6) and $\mathrm{C}^{18} \mathrm{O}_{2}$ (1967.3, 829.5; 1806.1, 905.3; 1838.8, 918.9), respectively, confirm that each molecule contains a CO and a MO group, on the basis of comparison of observed isotopic frequency ratios with calculated harmonic diatomic ratios. Experiments run with ${ }^{12} \mathrm{CO}_{2} /{ }^{13} \mathrm{CO}_{2}, \mathrm{C}^{16} \mathrm{O}_{2} /$ $\mathrm{C}^{18} \mathrm{O}_{2}$, and $\mathrm{C}^{16} \mathrm{O}_{2} / \mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O} / \mathrm{C}^{18} \mathrm{O}_{2}$ all revealed isotopic doublets in the CO stretching region, and the latter two revealed doublets in the MO stretching region. This isotopic pattern confirms the presence of exactly one CO group and exactly one MO group, allowing definitive spectral assignment of these bands to the OMCO molecules. For both chromium and molybdenum, isotopic splittings due to the natural abundances of the metal isotopes were observed for the MO stretching fundamental, and the observed statistical distribution confirmed the presence of exactly one metal atom. In experiments run with Cr and Mo with ${ }^{13} \mathrm{CO}_{2}$, the ${ }^{18} \mathrm{O}$ impurity in the sample proved sufficiently large to observe the CO stretch of $\mathrm{OM}^{13} \mathrm{C}^{18} \mathrm{O}$, which occurred at 1921.4 and $1762.4 \mathrm{~cm}^{-1}$ for Cr and Mo , respectively.

In the experiments with chromium and CO_{2}, a higher energy combination band was observed at $2175.4 \mathrm{~cm}^{-1}$. This band shifted to $2126.7 \mathrm{~cm}^{-1}$ on reaction with ${ }^{13} \mathrm{CO}_{2}$ and $2124.9 \mathrm{~cm}^{-1}$ on reaction with $\mathrm{C}^{18} \mathrm{O}_{2}$ and, as well as shadowing the bands due to the CO and CrO stretches of this molecule upon annealing and photolysis, also appears as a doublet in experiments run with ${ }^{12} \mathrm{CO}_{2} /{ }^{13} \mathrm{CO}_{2}, \mathrm{C}^{16} \mathrm{O}_{2} / \mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O} / \mathrm{C}^{18} \mathrm{O}_{2}$, and $\mathrm{C}^{16} \mathrm{O}_{2} / \mathrm{C}^{18} \mathrm{O}_{2}$. For tungsten it proved possible to locate one of the low-energy heavily mixed modes, consisting of partly $\mathrm{W}-\mathrm{C}$ stretch and

Figure 2. Infrared spectra of the matrix-isolated products from the reaction of laser-ablated Mo with $2 \% \mathrm{CO}_{2}$ in argon after (a) 1 h of deposition, (b) annealing to 20 K , (c) broad band UV-photolysis, (d) annealing to 30 K , and (e) annealing to 35 K .
partly CO bend. The feature occurs at $483.8 \mathrm{~cm}^{-1}$ in the ${ }^{12}$ CO_{2} spectrum, $469.1 \mathrm{~cm}^{-1}$ in the $\mathrm{C}^{18} \mathrm{O}_{2}$ spectrum, and 477.6 cm^{-1} in the ${ }^{13} \mathrm{CO}_{2}$ spectrum. It appears as a doublet in experiments run with ${ }^{12} \mathrm{CO}_{2} /{ }^{13} \mathrm{CO}_{2}, \mathrm{C}^{16} \mathrm{O}_{2} / \mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O} / \mathrm{C}^{18} \mathrm{O}_{2}$, and $\mathrm{C}^{16} \mathrm{O}_{2} / \mathrm{C}^{18} \mathrm{O}_{2}$ and displays exactly the same annealing and photolysis behavior as the CO and WO stretching modes associated with this molecule. The observed isotope shifts (6.2 cm^{-1} from OWCO to $\mathrm{OW}^{13} \mathrm{CO}$ and $14.7 \mathrm{~cm}^{-1}$ from OWCO to $\mathrm{OWC}^{18} \mathrm{O}$) find very pleasing agreement with those calculated ($6.9 \mathrm{~cm}^{-1}$ from OWCO to $\mathrm{OW}^{13} \mathrm{CO}$ and $14.3 \mathrm{~cm}^{-1}$ from OWCO to $\mathrm{OWC}^{18} \mathrm{O}$) using the Gaussian 94 program, as detailed in Table 4.

The effects of annealing and photolysis on the samples are shown in Figures 1-3. As can be seen the features due to the OCrCO molecule grow upon annealing to 20 K and upon photolysis but decrease upon annealing to 30 and 35 K . OMoCO displayed similar annealing properties although the photolytic growth was not quite as marked. The bands due to OWCO increased upon initial annealing to 20 K , decreased upon photolysis, increased upon annealing to 30 K , and decreased upon annealing to 35 K .

Optimized energies, frequencies, and, in the case of the calculations using Gaussian 94, isotope shifts are presented in Table 4. Calculations using either the Gaussian 94 program or ADF 2.0.1 predict the vibrational frequencies of these molecules to within a few percent of the values observed in an argon matrix. The calculated and observed relative intensities of the vibrations also match remarkably well. For all three OMCO molecules the agreement between the observed and calculated isotopic ratios, $v_{12 / 13}$ and $v_{16 / 18}$, is excellent, confirming both the identification of the molecules and the accuracy of the calculations used to predict their mechanics of vibration.

Figure 3. Infrared spectra of the matrix-isolated products from the reaction of laser-ablated W with $2 \% \mathrm{CO}_{2}$ in argon after (a) 1 h of deposition, (b) annealing to 20 K , (c) broad band UV-photolysis, (d) annealing to 30 K , and (e) annealing to 35 K .

The observation of direct insertion of laser-ablated chromium atoms into CO_{2} is in contrast to an earlier study of thermal chromium atoms in a pure CO_{2} matrix where there was no evidence for insertion. ${ }^{10,24}$
$\mathbf{O}_{\mathbf{2}} \mathbf{M}(\mathbf{C O})_{2}$. The other main product from these reactions proved to arise from the insertion of the metal atoms into two CO_{2} molecules. As might be anticipated by raising the concentration of CO_{2} from 0.5% to 2%, the relative yield of $\mathrm{O}_{2} \mathrm{M}(\mathrm{CO})_{2}$ to OMCO increases. For all three molecules two bands were observed in the CO stretching region (2123.2, 2059.7; 2101.9, 2020.1; 2091.1, 1998.2) corresponding to the symmetric and antisymmetric CO stretches of the $\mathrm{O}_{2} \mathrm{M}(\mathrm{CO})_{2}$ molecules, while in the MO stretching region the antisymmetric MO_{2} sretches were seen for all three molecules (981.4, 885.6, 901.1), but the much weaker symmetric stretches were only seen for chromium (941.6) and tungsten (961.6). Reaction with ${ }^{13}$ CO_{2} confirmed that the two highest bands (2074.8, 2013.8; $2053.9,1975.4 ; 2042.9,1953.6$) are indeed due to CO stretches, while the bands in the oxide region showed no apparent shift, confirming that carbon was not involved in these modes. Reaction with $\mathrm{C}^{18} \mathrm{O}_{2}$ confirmed further that the higher two bands (2075.3, 2011.6; 2054.7, 1972.7; 2045.1, 1953.6) were due to CO stretches and that the antisymmetric MO_{2} stretching modes ($945.1 ; 846.1 ; 856.1$) and symmetric stretching CrO_{2} (892.2)

[^2]

Figure 4. Infrared spectra of the reaction products of Cr and 0.5% CO_{2} after annealing to $20 \mathrm{~K}:$ (a) ${ }^{13} \mathrm{CO}_{2}$; (b) $\mathrm{CO}_{2} /{ }^{13} \mathrm{CO}_{2}$; (c) CO_{2}; (d) $\mathrm{C}^{18} \mathrm{O}_{2}$; (e) $\mathrm{CO}_{2} / \mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O} / \mathrm{C}^{18} \mathrm{O}_{2}$; (f) $\mathrm{CO}_{2} / \mathrm{C}^{18} \mathrm{O}_{2}$.

Figure 5. Infrared spectra of the reaction products of Mo and 0.5% CO_{2} after annealing to $30 \mathrm{~K}:$ (a) ${ }^{13} \mathrm{CO}_{2}$; (b) $\mathrm{CO}_{2} /{ }^{13} \mathrm{CO}_{2}$; (c) CO_{2}; (d) $\mathrm{C}^{18} \mathrm{O}_{2}$; (e) $\mathrm{CO}_{2} / \mathrm{C}^{18} \mathrm{O}^{18} \mathrm{O} / \mathrm{C}^{18} \mathrm{O}_{2}$; (f) $\mathrm{CO}_{2} / \mathrm{C}^{18} \mathrm{O}_{2}$.
and WO_{2} (909.4) modes were indeed metal oxide stretches. Reaction with either $\mathrm{C}^{16} \mathrm{O}_{2} / \mathrm{C}^{18} \mathrm{O}_{2}$ or $\mathrm{C}^{16} \mathrm{O}_{2} / \mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O} / \mathrm{C}^{18} \mathrm{O}_{2}$ gave

Figure 6. Infrared spectra of the reaction products of W and 0.5% CO_{2} after annealing to 20 K : (a) ${ }^{13} \mathrm{CO}_{2}$; (b) $\mathrm{CO}_{2} /{ }^{13} \mathrm{CO}_{2}$; (c) CO_{2}; (d) $\mathrm{C}^{18} \mathrm{O}_{2}$; (e) $\mathrm{CO}_{2} / \mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O} / \mathrm{C}^{18} \mathrm{O}_{2}$; (f) $\mathrm{CO}_{2} / \mathrm{C}^{18} \mathrm{O}_{2}$.
rise to 1:2:1 asymmetric triplets for all these bands, details of which can be found in Tables 1-3. This is indicative of the presence of precisely two equivalent CO groups and precisely two equivalent oxygen atoms and confirms that the two oxygens and CO groups bound to the metals must come from two different CO_{2} molecules. Reaction with a ${ }^{12} \mathrm{CO}_{2} /{ }^{13} \mathrm{CO}_{2}$ mixture revealed a $1: 2: 1$ isotopic triplet for both CO stretching fundamentals, further confirming the presence of two equivalent CO groups. In the cases of chromium and molybdenum, the presence of exactly one metal atom is clearly demonstrated by the statistical distribution of the metal isotopic pattern for the $\mathrm{M}-\mathrm{O}$ antisymmetric stretching fundamental, as illustrated in Figures 1 and 5. For all three molecules the agreement between the experimental and theoretical spectra, details of which can be found in Table 5, is extremely good.

For all three metals it proved possible to observe one of the lower energy modes, which involved primarily the metalcarbon antisymmetric stretching motion. The spectra of the matrix-isolated products from the reaction of molybdenum with CO_{2} showed a weak band at $541.3 \mathrm{~cm}^{-1}$ which displays the same annealing and photolysis behavior as the rest of the bands associated with the molecule as well as preserving a constant relative intensity to the other bands in all experiments. The band shifts $4.8 \mathrm{~cm}^{-1}\left(c f .4 .8 \mathrm{~cm}^{-1}\right.$ calculated) on reaction with $\mathrm{C}^{18} \mathrm{O}_{2}$ and $14.5 \mathrm{~cm}^{-1}$ (cf. $15.5 \mathrm{~cm}^{-1}$ calculated) on reaction with ${ }^{13} \mathrm{CO}_{2}$. Appropriate isotopic triplets at $541.3,534.6$, and 526.7 cm^{-1} (cf. 543.3, 535.8 , and $527.8 \mathrm{~cm}^{-1}$ calculated) are observed in the reactions with ${ }^{12} \mathrm{CO}_{2} /{ }^{13} \mathrm{CO}_{2}$ and at $541.3,538.8$, and 536.5 cm^{-1} (cf. $543.3,541.1$, and $538.8 \mathrm{~cm}^{-1}$ calculated) in experiments run with $\mathrm{C}^{16} \mathrm{O}_{2} / \mathrm{C}^{18} \mathrm{O}_{2}$. Calculations predict the presence of several bands in this region for the products arising from the reaction with $\mathrm{C}^{16} \mathrm{O}_{2} / \mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O} / \mathrm{C}^{18} \mathrm{O}_{2}$, and the weakness of the feature precluded the resolution of these components in the experiment.

Table 1. Observed Infrared Absorptions $\left(\mathrm{cm}^{-1}\right)$ of the Dominant Products in the Reaction of Laser-Ablated Chromium Atoms with CO_{2} Trapped in an Argon Matrix at 6-7 K

molecule	CO_{2}	${ }^{13} \mathrm{CO}_{2}$	${ }^{12} \mathrm{CO}_{2} /{ }^{13} \mathrm{CO}_{2}$	$\mathrm{C}^{18} \mathrm{O}_{2}$	$\mathrm{C}^{16} \mathrm{O}_{2} / \mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O} / \mathrm{C}^{18} \mathrm{O}_{2}$	assignment
OCrCO^{a}	2014.4	1969.7	2014.4, 1969.7	1967.3	2014.4, 1967.3	$\nu(\mathrm{C}-\mathrm{O})$
	$866.3{ }^{\text {b }}$	866.3	866.3	$829.5{ }^{\text {b }}$	866.3, 829.5	$\nu(\mathrm{Cr}-\mathrm{O})$
	2175.4	2126.7	2175.4, 2126.7	2124.9	2175.4, 2124.9	combination
$\mathrm{O}_{2} \mathrm{Cr}(\mathrm{CO})_{2}{ }^{\text {a }}$	2123.2	2074.8	2123.2, 2074.8	2075.3	2123.2, 2107.2, 2075.3	$\nu_{\mathrm{s}}(\mathrm{C}-\mathrm{O})^{c}$
	2059.7	2013.8	2059.7, 2013.8	2011.6	2058.7, 2027.6, 2011.6	$\nu_{\mathrm{as}}(\mathrm{C}-\mathrm{O})^{c}$
	$981.4{ }^{\text {b }}$	981.4	981.4	$945.1{ }^{\text {b }}$	981.4, 975.4, 945.1	$\nu_{\text {as }}(\mathrm{Cr}-\mathrm{O})^{c}$
	941.6	941.6	941.6	892.2	941.6, 903.0, 892.2	$\nu_{\mathrm{s}}(\mathrm{Cr}-\mathrm{O})^{c}$
	540.6	527.4	540.6, 534.1, 527.4	534.9	d	$\nu_{\text {as }}(\mathrm{Cr}-\mathrm{C})^{c}$
$\mathrm{O}_{2} \mathrm{CrCO}^{a}$	2037.1	1990.0	2037.1, 1990.0	1989.7	2037.1, 1989.7	$\nu(\mathrm{C}-\mathrm{O})$
	970.5	970.5	970.5	934.1	970.5, 959.5, 934.1	$v_{\text {as }}(\mathrm{Cr}-\mathrm{O})^{c}$
	914.4	914.4	914.4	879.5	924.3, ca. 895.1, 879.5	$\nu_{\mathrm{s}}(\mathrm{Cr}-\mathrm{O})^{c}$
CrO^{a}	846.3	846.3	846.3	809.6	846.3, 809.6	$\nu(\mathrm{Cr}-\mathrm{O})$
$\mathrm{CrO}_{2}{ }^{\text {a }}$	965.2	965.2	965.2	929.1	965.2, 953.6, 929.1	$\nu_{\mathrm{as}}(\mathrm{Cr}-\mathrm{O})^{c}$
	914.4	914.4	914.4	869.7	914.4, ?, 869.7	$\nu_{\mathrm{s}}(\mathrm{Cr}-\mathrm{O})^{c}$
CrCO	1975.3	1932.4	1975.3, 1932.4	1927.3	1975.3, 1927.3	$\nu(\mathrm{C}-\mathrm{O})$
$\mathrm{OCr}(\mathrm{CO})_{2}{ }^{\text {a }}$	1923.9	1881.2	1923.9, 1897.9, 1881.2	1878.9	1923.9, 1896.5, 1878.9	$\nu_{\mathrm{as}}(\mathrm{C}-\mathrm{O})^{c}$
	891.0	891.0	891.0	853.8	891.0, 853.8	$\nu(\mathrm{Cr}-\mathrm{O})$
$\mathrm{Cr}\left(\eta^{1}-\mathrm{OCO}\right)$	1735.6	1694.8	1735.6, 1694.8	1698.9	1735.6, 1732.3, 1702.7, 1698.9	$\nu_{\mathrm{as}}(\mathrm{C}-\mathrm{O})^{c}$
site 1^{a}	721.0	714.1	721.0, 714.1	690.5	721.0, 709.3, 703.1, 690.5	$\nu(\mathrm{Cr}-\mathrm{O})$
$\mathrm{Cr}\left(\eta^{1}-\mathrm{OCO}\right)$	ca. 1738	ca. 1697	ca. 1738, 1697	ca. 1701	ca. 1738, ?, ?, 1701	$\nu_{\mathrm{as}}(\mathrm{C}-\mathrm{O})^{c}$
site 2^{a}	716.1	709.0	716.1, 709.0	686.5	716.1, 704.1, 698.8, 686.5	$\nu(\mathrm{Cr}-\mathrm{O})$
$\mathrm{Cr}(\mu-\mathrm{O})(\mu-\mathrm{CO}) \mathrm{Cr}(?)$	1773.8	1736.8	1773.8, 1736.8	1737.2	1773.8, 1737.2	$\nu(\mathrm{C}-\mathrm{O})$
	785.0	783.4	785.0, 783.4	746.7	785.0, 746.7	$v(\mathrm{Cr}-\mathrm{O})$

${ }^{a}$ Refers to ${ }^{52} \mathrm{Cr} .{ }^{b}$ For OCrCO $\left({ }^{18} \mathrm{OCr}^{18} \mathrm{O}\right)$ the bands due to ${ }^{50} \mathrm{Cr},{ }^{53} \mathrm{Cr}$, and ${ }^{54} \mathrm{Cr}$ occurred at 870.4 (833.8), 864.4 (827.5), and 862.6 (825.5), respectively. For $\mathrm{O}_{2} \mathrm{Cr}(\mathrm{CO})_{2}\left({ }^{18} \mathrm{O}_{2} \mathrm{Cr}\left(\mathrm{C}^{18} \mathrm{O}\right)_{2}\right)$ the bands due to ${ }^{50} \mathrm{Cr}$ and ${ }^{53} \mathrm{Cr}$ were resolved at 987.9 (951.9) and 978.3 (941.9), respectively. ${ }^{c} \boldsymbol{v}_{\mathrm{s}}$ refers to the symmetric stretching frequency, and $v_{\text {as }}$ refers to the antisymmetric stretching frequency. ${ }^{d}$ Owing to the many possible isotopomers and the weakness of this feature, all the intermediate components could not be resolved for this band. A mechanical mixture of $\mathrm{CO}_{2} / \mathrm{C}^{18} \mathrm{O}_{2} \mathrm{did}^{2}$ however yield a $1: 2: 1$ triplet at $540.6,537.9$, and $534.9 \mathrm{~cm}^{-1}$.

Table 2. Observed Infrared Absorptions $\left(\mathrm{cm}^{-1}\right)$ of the Dominant Products in the Reaction of Laser-Ablated Molybdenum Atoms with CO_{2} Trapped in an Argon Matrix at 6-7 K

molecule	CO_{2}	${ }^{13} \mathrm{CO}_{2}$	${ }^{12} \mathrm{CO}_{2} /{ }^{13} \mathrm{CO}_{2}$	$\mathrm{C}^{18} \mathrm{O}_{2}$	$\mathrm{C}^{16} \mathrm{O}_{2} / \mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O} / \mathrm{C}^{18} \mathrm{O}_{2}$	assignment
OMoCO^{a}	1847.0	1804.3	1847.0, 1804.3	1806.1	1847.0, 1806.1	$\nu(\mathrm{C}-\mathrm{O})$
	951.8	952.4	951.8, 952.4	905.3	951.8, 905.3	$v(\mathrm{Mo}-\mathrm{O})$
$\mathrm{O}_{2} \mathrm{Mo}(\mathrm{CO})_{2}{ }^{a}$	2101.9	2053.9	2101.9, 2084.0, 2053.8	2054.7	2101.9, 2084.6, 2054.7	$\nu_{\mathrm{s}}(\mathrm{C}-\mathrm{O})^{b}$
	2020.1	1975.4	2020.1, 1991.4, 1975.4	1972.7	2020.1, 1990.0, 1972.7	$\nu_{\mathrm{as}}(\mathrm{C}-\mathrm{O})^{c}$
	885.6	885.6	885.6	846.1	885.6, 856.7, 846.1	$\nu_{\mathrm{as}}(\mathrm{Mo}-\mathrm{O})^{c}$
	541.3	527.8	543.3, 535.8, 527.8	536.5	d	$\nu_{\mathrm{as}}(\mathrm{Mo}-\mathrm{C})^{c}$
$\mathrm{O}_{2} \mathrm{MoCO}^{a}$	2000.7	1955.2	2000.7, 1955.2	1955.7	2000.7, 1955.7	$v(\mathrm{C}-\mathrm{O})$
	876.5	876.5	876.5	837.2	885.6, ca. 849.2, 837.2	$\nu_{\mathrm{as}}(\mathrm{Mo}-\mathrm{O})^{c}$
MoCO	1862.6	1819.2	1862.6, 1819.2	1822.3	1862.6, 1822.3	$\nu(\mathrm{C}-\mathrm{O})$

${ }^{a}$ Refers to ${ }^{98} \mathrm{Mo} .{ }^{b} \nu_{\mathrm{s}}$ refers to the symmetric stretching frequency. ${ }^{c} v_{\mathrm{as}}$ refers to the antisymmetric stretching frequency. ${ }^{d}$ Not clearly resolved for all the possible isotopomers. For $\mathrm{CO}_{2} / \mathrm{C}^{18} \mathrm{O}_{2}$ a triplet is seen at $543.3,541.1$, and $538.8 \mathrm{~cm}^{-1}$.

Table 3. Observed Infrared Absorptions (cm^{-1}) of the Dominant Products in the Reaction of Laser-Ablated Tungsten Atoms with CO_{2} Trapped in an Argon Matrix at 6-7K

molecule	CO_{2}	${ }^{13} \mathrm{CO}_{2}$	${ }^{12} \mathrm{CO}_{2} /{ }^{13} \mathrm{CO}_{2}$	$\mathrm{C}^{18} \mathrm{O}_{2}$	$\mathrm{C}^{16} \mathrm{O}_{2} / \mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O} / \mathrm{C}^{18} \mathrm{O}_{2}$	assignment
OWCO	1879.0	1837.0	1879.0, 1837.0	1838.8	1879.0, 1838.8	$\nu(\mathrm{C}-\mathrm{O})$
	969.6	969.6	969.6	918.9	969.6, 918.9	$v(\mathrm{~W}-\mathrm{O})$
	483.8	477.6	483.8, 477.6	469.1	483.6. 469.1	$\nu(\mathrm{W}-\mathrm{O}) / \delta(\mathrm{C}-\mathrm{O})$
$\mathrm{O}_{2} \mathrm{~W}(\mathrm{CO})_{2}$	2091.1	2042.9	2091.1, 2072.7, 2042.9	2045.1	2091.1, 2073.4, 2045.1	$\nu_{\mathrm{s}}(\mathrm{C}-\mathrm{O})^{a}$
	1998.2	1953.6	1998.2, 1970.4, 1953.6	1952.1	1998.2, 1969.7, 1952.1	$\nu_{\mathrm{as}}(\mathrm{C}-\mathrm{O})^{b}$
	961.6	961.6	961.6	909.4	961.6, 944.3, 909.4	$\nu_{\mathrm{s}}(\mathrm{W}-\mathrm{O})^{a}$
	901.1	901.1	901.1	856.1	901.1, 870.4, 856.1	$\nu_{\text {as }}(\mathrm{W}-\mathrm{O})^{b}$
	534.6	513.4	534.6, 527.5, 513.4	524.9?	c	$\nu_{\text {as }}(\mathrm{W}-\mathrm{C})^{b}$
$\mathrm{O}_{2} \mathrm{WCO}$	1976.4	1930.6	1976.4, 1930.6	1932.9	1976.4, 1932.9	$v(\mathrm{C}-\mathrm{O})$
	ca. 903.5	ca. 903.5	ca. 903.5	ca. 857.4	ca. 903.5, 872.3, 857.4	$\nu_{\mathrm{as}}(\mathrm{W}-\mathrm{O})^{b}$
WO	1051.0^{d}	1051.0	1051.0	$996.1{ }^{\text {d }}$	1051.0, 996.1	$\nu(\mathrm{W}-\mathrm{O})$
WCO	1848.8	1807.7	1848.8, 1807.7	1808.4	1848.8, 1808.4	$v(\mathrm{C}-\mathrm{O})$
$\mathrm{OW}(\mu-\mathrm{CO})_{2} \mathrm{WO}$	1713.4	1674.5	1713.4, 1691.9, 1674.5	1675.9	1713.4, 1692.8, 1675.9	$\nu_{\mathrm{as}}(\mathrm{C}-\mathrm{O})^{b}$

${ }^{a} \nu_{\mathrm{s}}$ refers to the symmetric stretching frequency. ${ }^{b} v_{\text {as }}$ refers to the antisymmetric stretching frequency. ${ }^{c}$ This feature proved too weak and broad to resolve all the possible isotopomers. For experiments run with $\mathrm{CO}_{2} / \mathrm{C}^{18} \mathrm{O}_{2}$, the band though weak appears to be a triplet at ca. 534.6 , 531.8 , and $528.9 \mathrm{~cm}^{-1} .{ }^{d}$ The molecule also has two other sites at 1053.8 and $1048.6 \mathrm{~cm}^{-1}$ and 998.7 and $993.9 \mathrm{~cm}^{-1}$ for WO and $\mathrm{W}^{18} \mathrm{O}$, respectively.

For tungsten a similar feature occurs at $534.6 \mathrm{~cm}^{-1}$ (cf. 526.8 cm^{-1} calculated) in experiments performed with CO_{2} as the reactant gas and shifts to $513.4 \mathrm{~cm}^{-1}$ ($c f .512 .5 \mathrm{~cm}^{-1}$ calculated) and $528.9 \mathrm{~cm}^{-1}\left(c f .524 .7 \mathrm{~cm}^{-1}\right.$ calculated) in experiments run with ${ }^{13} \mathrm{CO}_{2}$ and $\mathrm{C}^{18} \mathrm{O}_{2}$, respectively. Appropriate triplets are weakly observed for reactions with ${ }^{12} \mathrm{CO}_{2} /{ }^{13} \mathrm{CO}_{2}$ and $\mathrm{C}^{16} \mathrm{O}_{2} /$
$\mathrm{C}^{18} \mathrm{O}_{2}$ as detailed in Table 3; for the experiment with $\mathrm{C}^{16} \mathrm{O}_{2} /$ $\mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O} / \mathrm{C}^{18} \mathrm{O}_{2}$ the feature proved too broad and weak to resolve the multiplet. In experiments run with CO_{2} another feature, which tracks with the rest of the bands due to $\mathrm{O}_{2} \mathrm{~W}(\mathrm{CO})_{2}$, proved observable at $409.3 \mathrm{~cm}^{-1}$. This approaches the low-frequency limits of our detection capabilities, and calculations anticipate

Table 4. Calculated Geometries, Frequencies, and Intensities of the OMCO Molecules
(a) $\mathrm{OCrCO} ;{ }^{5} \mathrm{~A}^{\prime}$ Ground State; C_{s} Symmetry

that ${ }^{18} \mathrm{O}$ substitution will cause this band to shift out of range (a drop of $12.8 \mathrm{~cm}^{-1}$) whereas ${ }^{13} \mathrm{C}$ substitution results in a shift of $5.9 \mathrm{~cm}^{-1}$ which will be difficult to detect. In the absence of isotopic data the assignment of this band to the $\mathrm{O}_{2} \mathrm{~W}(\mathrm{CO})_{2}$ molecule cannot be definitive, but the band's behavior and relative intensity (approximately the same intensity as the band at $534.6 \mathrm{~cm}^{-1}$) coupled to the results of the theoretical calculations (see Table 5; note that the relative intensities of the low-energy bands are predicted to be the same by Gaussian 94 and of similar magnitude by ADF 2.0.1.) do provide persuasive evidence that this feature is associated with the $\mathrm{O}_{2} \mathrm{~W}(\mathrm{CO})_{2}$ molecule.

For $\mathrm{O}_{2} \mathrm{Cr}(\mathrm{CO})_{2}$ the analagous band occurs at $540.6 \mathrm{~cm}^{-1}$ and is shifted to 527.4 and $534.9 \mathrm{~cm}^{-1}$ upon isotopic substitution with ${ }^{13} \mathrm{C}$ and ${ }^{18} \mathrm{O}$, respectively. Isotopic triplets were observed in the reactions with ${ }^{12} \mathrm{CO}_{2} /{ }^{13} \mathrm{CO}_{2}$ and $\mathrm{C}^{16} \mathrm{O}_{2} / \mathrm{C}^{18} \mathrm{O}_{2}$ as detailed in Table 1; for the experiment run with $\mathrm{C}^{16} \mathrm{O}_{2} / \mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O} / \mathrm{C}^{18} \mathrm{O}_{2}$ the feature once again proved too broad and weak to resolve the expected multiplet.

The bands due to the $\mathrm{O}_{2} \mathrm{M}(\mathrm{CO})_{2}$ molecules all grow upon annealing to 20 K , are unaffected by broad band UV-photolysis, grow markedly upon annealing to 30 K , and remain at approximately the same intensity at 35 K . The experimentally observed and calculated spectra for all three of these molecules, as detailed in Table 5, prove to be in excellent agreement, and
comparisons between observed and calculated isotope shifts further confirm that the calculations are correctly anticipating the mechanics of vibration of these molecules.

There have been numerous previous studies involving the photolysis of $\mathrm{M}(\mathrm{CO})_{6}$ with $\mathrm{O}_{2},{ }^{25-28}$ and bands in these spectra were assigned to the $\mathrm{O}_{2} \mathrm{M}(\mathrm{CO})_{2}$ molecules. The CO stretching region in these experiments was extremely congested, but the bands in this region that are observed here for $\mathrm{O}_{2} \mathrm{Mo}(\mathrm{CO})_{2}$ and $\mathrm{O}_{2} \mathrm{~W}(\mathrm{CO})_{2}$ are essentially the same as those observed by Almond et al. for their species "C" which was assigned to $\mathrm{O}_{2} \mathrm{M}$ $(\mathrm{CO})_{x}$, not those observed for their species "D" which was assigned to $\mathrm{O}_{2} \mathrm{M}(\mathrm{CO})_{2}{ }^{25}$ Our results for $\mathrm{O}_{2} \mathrm{Cr}(\mathrm{CO})_{2}$ do however confirm the previous correct identification of this molecule. ${ }^{25,27}$
$\mathbf{O}_{\mathbf{2}} \mathbf{M C O}$. For all three metals there is a prominent feature in the $1800-2100 \mathrm{~cm}^{-1}$ region $(2037.1,2000.7,1976.4)$ which shifts appropriately upon reaction with ${ }^{13} \mathrm{CO}_{2}(1990.0,1955.2$, $1930.6)$ and $\mathrm{C}^{18} \mathrm{O}_{2}(1989.7,1955.7,1932.9)$ to confirm that it is indeed a CO stretch. Reaction with isotopically mixed

[^3]Table 5. Calculated Geometries, Selected Frequencies, and Intensities of $\mathrm{O}_{2} \mathrm{M}(\mathrm{CO})_{2}$ Molecules
(a) $\mathrm{O}_{2} \mathrm{Cr}(\mathrm{CO})_{2} ;{ }^{1} \mathrm{~A}^{\prime}$ Ground State; C_{s} Symmetry

ADF 2.0.1 geometry	$r_{\mathrm{CO}}=1.150 ; r_{\mathrm{CrO}}=1.604 ; r_{\mathrm{CrC}}=1.927 ; \angle \mathrm{OCrC}=106.9^{\circ}, 107.1^{\circ} ; \angle \mathrm{OCrO}=126.0^{\circ} ; \angle \mathrm{CCrC}=99.7^{\circ}$			
observed v / cm^{-1}	2123.2	2059.7	981.4	540.6
ADF, $v / \mathrm{cm}^{-1}\left(\mathrm{I} / \mathrm{kmmol}^{-1}\right)$	$2065.6(261)$	$2012.3(1003)$	$1037.9(187)$	$1007.3(16)$

(b) $\mathrm{O}_{2} \mathrm{Mo}(\mathrm{CO})_{2} ;{ }^{1} \mathrm{~A}^{\prime}$ Ground State; C_{s} Symmetry

Gaussian 94 geometry	$r_{\mathrm{CO}}=1.165 ; r_{\mathrm{MoO}}=1.741 ; r_{\mathrm{MoC}}=2.054 ; \angle \mathrm{OMoC}=108.7^{\circ} ; \angle \mathrm{OMoO}=124.3^{\circ} ; \angle \mathrm{CMoC}=93.4^{\circ} ;\left\langle S^{2}\right\rangle=0.0000$
ADF 2.0.1 geometry	$r_{\mathrm{CO}}=1.153 ; r_{\mathrm{MoO}}=1.747 ; r_{\mathrm{MoC}}=2.067 ; \angle \mathrm{OMoC}=109.0^{\circ} ; \angle \mathrm{OMoO}=123.7^{\circ} ; \angle \mathrm{CMoC}=92.9^{\circ}$

observed frequencies and isotope ratios			calculated frequencies and isotope ratios using Gaussian 94 (BP86)			calculated frequencies using ADF (LDA + BP)
ν / cm^{-1}	$\nu_{12 / 13}$	$\nu_{16 / 18}$	$\nu / \mathrm{cm}^{-1}\left(1 / \mathrm{kmmol}^{-1}\right)$	$\nu_{12 / 13}$	$\nu_{16 / 18}$	$v / \mathrm{cm}^{-1}\left(1 / \mathrm{kmmol}^{-1}\right)$
2101.9	1.02337	1.02297	2059.7 (283)	1.02401	1.02289	2051.9 (311)
2020.1	1.02263	1.02403	1997.5 (1009)	1.02352	1.02362	1989.9 (1093)
			935.0 (24)	1.00000	1.05519	922.7 (25)
885.6	1.00000	1.04668	912.4 (180)	1.00000	1.04715	898.8 (201)
(c) $\mathrm{O}_{2} \mathrm{~W}(\mathrm{CO})_{2} ;{ }^{1} \mathrm{~A}^{\prime}$ Ground State; C_{s} Symmetry						
Gaussian 94 geometry ADF 2.0.1 geometry		$\begin{aligned} & r_{\mathrm{CO}}=1.168 ; r_{\mathrm{WO}}=1.742 ; r_{\mathrm{WC}}=2.042 ; \angle \mathrm{OWC}=109.9^{\circ} ; \angle \mathrm{OWO}=121.1^{\circ} ; \angle \mathrm{CWC}=92.5^{\circ} ;\left\langle S^{2}\right\rangle=0.0000 \\ & r_{\mathrm{CO}}=1.155 ; r_{\mathrm{wO}}=1.785 ; r_{\mathrm{wC}}=2.101 ; \angle \mathrm{OWC}=110.9^{\circ} ; \angle \mathrm{OWO}=119.0^{\circ} ; \angle \mathrm{CWC}=90.8^{\circ} \end{aligned}$				

observed frequencies and isotope ratios			calculated frequencies and isotope ratios using Gaussian 94 (BP86)			calculated frequencies using ADF (LDA + BP)
v / cm^{-1}	$\nu_{12 / 13}$	$\nu_{16 / 18}$	$\nu / \mathrm{cm}^{-1}\left(1 / \mathrm{kmmol}^{-1}\right)$	$\nu_{12 / 13}$	ν_{16118}	$\nu / \mathrm{cm}^{-1}\left(\mathrm{I} / \mathrm{kmmol}^{-1}\right)$
2091.1	1.02359	1.02249	2054.1 (276)	1.02428	1.02250	2035.2 (311)
1998.2	1.02283	1.02362	1989.2 (1046)	1.02378	1.02274	1973.6 (1125)
961.6	1.00000	1.05740	957.2 (24)	1.00000	1.05780	908.8 (28)
901.1	1.00000	1.05264	910.8 (154)	1.00000	1.05295	857.2 (156)
534.6	1.04129	1.01078	528.8 (11)	1.03180	1.00751	498.0 (7)
409.3			440.2 (11)	1.01354	1.02995	403.1 (11)

samples reveals doublets for this feature, indicative of precisely one CO group. For chromium and molybdenum it proved possible to clearly observe the MO_{2} antisymmetric stretching mode ($970.5,876.5$), and for chromium the symmetric stretching mode (924.3) also proved sufficiently intense to be observed. The $16 / 18$ isotope ratios for these bands (1.03897 and 1.04668 for the antisymmetric stretches of $\mathrm{O}_{2} \mathrm{CrCO}$ and $\mathrm{O}_{2} \mathrm{MoCO}$ and 1.05094 for the symmetric stretch of $\mathrm{O}_{2} \mathrm{CrCO} ; c f .1 .04549$ and 1.05159 calculated harmonic diatomic value) confirm that these motions are due to antisymmetric (lower than the diatomic ratio due to increased metal participation in vibration) and symmetric (higher than the diatomic ratio due to decreased metal participation in vibration) metal oxide stretching modes, respectively. The antisymmetric stretching mode of $\mathrm{O}_{2} \mathrm{WCO}$ is partially obscured by the intense band due to $\mathrm{O}_{2} \mathrm{~W}(\mathrm{CO})_{2}$. Nevertheless, there is a clear shoulder at higher frequencies on the band due to this molecule (ca. 903.5) which is unaffected by moving from CO_{2} to ${ }^{13} \mathrm{CO}_{2}$ but does split into a triplet (ca. 903.5, 872.3, 857.4) upon reaction with $\mathrm{C}^{16} \mathrm{O}_{2} / \mathrm{C}^{18} \mathrm{O}_{2}$ or $\mathrm{C}^{16} \mathrm{O}_{2} / \mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O} / \mathrm{C}^{18} \mathrm{O}_{2}$, confirming the presence of two equivalent oxygen atoms. The $16 / 18$ isotopic ratio (1.05377 ; cf. 1.05553 calculated harmonic WO diatomic) confirms that this is indeed an antisymmetric WO_{2} stretching fundamental. For all three molecules the band positions, relative intensities, and isotopic shifts are in excellent agreement with the calculations detailed in Table 6.

MO. The previously characterized metal monoxides MoO (893.5) and WO (1051.0) $)^{29-31}$ were observed, although in the case of MoO only very weakly. In the experiments run with chromium the metal monoxides CrO (846.5) and $\mathrm{Cr}^{18} \mathrm{O}$ (809.6) proved to be significant products, and these experiments constituted the first observation of CrO in a matrix (observed at $885.0 \mathrm{~cm}^{-1}$ in the gas phase). ${ }^{32}$ All these bands were present

[^4]at the same frequencies in reactions with either CO_{2} or ${ }^{13} \mathrm{CO}_{2}$, split into doublets upon reaction with $\mathrm{C}^{16} \mathrm{O}_{2} / \mathrm{C}^{18} \mathrm{O}_{2}$ or $\mathrm{C}^{16} \mathrm{O}_{2} /$ $\mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O} / \mathrm{C}^{18} \mathrm{O}_{2}$, and shifted appropriately upon reaction with $\mathrm{C}^{18} \mathrm{O}_{2}$. Comparison between the observed isotope ratios and calculated harmonic diatomic values confirms the assignment of these bands to the MO molecules. CrO has also now been detected in this laboratory ${ }^{33}$ as a product from the reactions of laser-ablated chromium atoms with either O_{2} or $\mathrm{N}_{2} \mathrm{O}$. Bands due to CrO_{2} were also observed here with CO_{2} experiments as well as in the above experiments. ${ }^{33}$ Table 7 provides a comparison between the observed and calculated frequencies for the MO and MO_{2} molecules.

MCO. The metal monocarbonyls MCO (1975.3, 1862.6, 1848.8) were detected in trace quantities in these experiments. CrCO has been previously characterized, ${ }^{34}$ but this represents the first observation of MoCO and WCO, as detailed in Table 7. To confirm these assignments, separate experiments were run in which the metals were ablated into streams of $c a .0 .1 \%$ CO in Ar , and all of these experiments gave MCO as the dominant product. Reaction with ${ }^{13} \mathrm{CO}(1932.4,1819.2,1807.7)$ and $\mathrm{C}^{18} \mathrm{O}(1927.3,1822.3,1808.4)$ confirmed that the absorptions are CO stretches, and experiments run with $\mathrm{CO} /{ }^{13} \mathrm{CO}$ and $\mathrm{CO} /$ $\mathrm{C}^{18} \mathrm{O}$ revealed appropriate isotopic doublets, confirming the presence of exactly one CO group. Calculations as detailed in Table 7 are in good agreement with the observed data and provide good theoretical support for the assignment of these bands to the metal monocarbonyls. Both WCO and MoCO calculate to be the expected linear, or approximately linear, structure, but CrCO is calculated by ADF to be highly bent.

[^5]Table 6. Calculated Geometries, Selected Frequencies, and Intensities of the $\mathrm{O}_{2} \mathrm{MCO}$ Molecules
(a) $\mathrm{O}_{2} \mathrm{CrCO} ;{ }^{3} \mathrm{~A}^{\prime \prime}$ (Gaussian 94), ${ }^{3} \mathrm{~A}^{\prime}$ (ADF) Ground State; C_{s} Symmetry

Gaussian 94 geometry ADF 2.0.1 geometry		$\begin{aligned} & r_{\mathrm{CO}}=1.167 ; r_{\mathrm{CrO}}=1.623 ; r_{\mathrm{CrC}}=1.899 ; \angle \mathrm{OCrC}=102.2^{\circ} ; \angle \mathrm{OCrO}=108.4^{\circ} ;\left\langle S^{2}\right\rangle=2.0001 \\ & r_{\mathrm{CO}}=1.144 ; r_{\mathrm{CrO}}=1.668 ; r_{\mathrm{CrC}}=2.050 ; \angle \mathrm{OCrC}=117.5^{\circ} ; \angle \mathrm{OCrO}=124.9^{\circ} \end{aligned}$				
observed frequencies and isotope ratios			calculated frequencies and isotope ratios using Gaussian 94 (BP86)			calculated frequencies using ADF (LDA + BP)
v / cm^{-1}	$\nu_{12 / 13}$	$\nu_{16 / 18}$	$v / \mathrm{cm}^{-1}\left(1 / \mathrm{kmmol}^{-1}\right)$	$\nu_{12 / 13}$	$\nu_{16 / 18}$	$v / \mathrm{cm}^{-1}\left(1 / \mathrm{kmmol}^{-1}\right)$
2037.1	1.02367	1.02382	2007.7 (767)	1.02366	1.02334	2080.7 (532)
970.5	1.00000	1.03897	973.3 (57)	1.00000	1.04332	1023.2 (262)
924.3	1.00000	1.05094	969.8 (96)	1.00000	1.04414	970.1 (36)
(b) $\mathrm{O}_{2} \mathrm{MoCO} ;{ }^{1} \mathrm{~A}^{\prime}$ Ground State; C_{s} Symmetry						
Gaussian 94 geometry ADF 2.0.1 geometry		$\begin{aligned} & r_{\mathrm{CO}}=1.174 ; r_{\mathrm{MoO}}=1.734 ; r_{\mathrm{MOC}}=2.004 ; \angle \mathrm{OMoC}=101.6^{\circ} ; \angle \mathrm{OMoO}=118.4^{\circ} ;\left\langle S^{2}\right\rangle=0.00000 \\ & r_{\mathrm{CO}}=1.161 ; r_{\mathrm{MoO}}=1.740 ; r_{\mathrm{MoC}}=2.021 ; \angle \mathrm{OMoC}=105.7^{\circ} ; \angle \mathrm{OMoO}=121.0^{\circ} \end{aligned}$				

observed frequencies and isotope ratios			calculated frequencies and isotope ratios using Gaussian 94 (BP86)			calculated frequencies using ADF (LDA + BP)
v / cm^{-1}	$\nu_{12 / 13}$	$\nu_{16 / 18}$	$v / \mathrm{cm}^{-1}\left(\mathrm{I} / \mathrm{kmmol}^{-1}\right)$	$\nu_{12 / 13}$	$\nu_{16 / 18}$	$v / \mathrm{cm}^{-1}\left(\mathrm{I} / \mathrm{kmmol}^{-1}\right)$
2000.7	1.02327	1.02301	1987.6	1.02406	1.02280	1982.5 (754)
			948.8	1.00000	1.05481	939.5 (23)
876.5	1.00000	1.04694	906.7	1.00000	1.04784	899.8 (214)
			473.7	1.01175	1.02755	466.6 (3)

(c) $\mathrm{O}_{2} \mathrm{WCO} ;{ }^{1} \mathrm{~A}^{\prime}$ Ground State; C_{s} Symmetry

Gaussian 94 geometry	$r_{\mathrm{CO}}=1.178 ; r_{\mathrm{WO}}=1.729 ; r_{\mathrm{WC}}=2.004 ; \angle \mathrm{OWC}=105.5^{\circ} ; \angle \mathrm{OWO}=113.0^{\circ} ;\left\langle S^{2}\right\rangle=0.00000$
ADF 2.0.1 geometry	$r_{\mathrm{CO}}=1.165 ; r_{\mathrm{WO}}=1.769 ; r_{\mathrm{WC}}=2.070 ; \angle \mathrm{OWC}=108.8^{\circ} ; \angle \mathrm{OWO}=113.9^{\circ}$

observed frequencies and isotope ratios			calculated frequencies and isotope ratios using Gaussian 94 (BP86)			calculated frequencies using ADF (LDA + BP)
v / cm^{-1}	$v_{12 / 13}$	$\nu_{16 / 18}$	$v / \mathrm{cm}^{-1}\left(\mathrm{I} / \mathrm{kmmol}^{-1}\right)$	$\nu_{12 / 13}$	$\nu_{16 / 18}$	$v / \mathrm{cm}^{-1}\left(\mathrm{I} / \mathrm{kmmol}^{-1}\right)$
1976.4	1.02359	1.02249	1969.1 (785)	1.02424	1.02254	1952.9 (880)
			979.5 (20)	1.00000	1.05720	933.7 (23)
903.5	1.00000	1.05376	919.5 (133)	1.00000	1.05351	873.1 (126)
			470.0 (4)	1.01359	1.03048	423.0 (3)

$\mathbf{O W}(\boldsymbol{\mu} \mathbf{- C O})_{2} \mathbf{W O}$. In the case of the reaction with tungsten, a bridged species, $\mathrm{OW}(\mu-\mathrm{CO})_{2} \mathrm{WO}$, the dimer of OWCO, is formed. Only the antisymmetric CO stretching mode is observed in a region typical for bridging CO groups. This band observed at $1713.4 \mathrm{~cm}^{-1}$ from the reaction of W with CO_{2} shifts to $1674.5 \mathrm{~cm}^{-1}$ on reaction of W with ${ }^{13} \mathrm{CO}_{2}$ and $1675.9 \mathrm{~cm}^{-1}$ on reaction of W with $\mathrm{C}^{18} \mathrm{O}_{2}$. It shows a 1:2:1 triplet at 1713.4, 1692.8 , and $1675.9 \mathrm{~cm}^{-1}$ upon reaction with either $\mathrm{C}^{16} \mathrm{O}_{2} / \mathrm{C}^{18} \mathrm{O}_{2}$ or $\mathrm{C}^{16} \mathrm{O}_{2} / \mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O} / \mathrm{C}^{18} \mathrm{O}_{2}$, and a 1:2:1 triplet at $1713.4,1691.9$, and $1674.5 \mathrm{~cm}^{-1}$ upon reaction with a ${ }^{12} \mathrm{CO}_{2} /{ }^{13} \mathrm{CO}_{2}$ mixture, indicating exactly two equivalent CO groups. The product is not observed in similar reactions involving CO, confirming that these absorptions are not due to the molecule $\mathrm{W}(\mu-\mathrm{CO})_{2} \mathrm{~W}$, and its yield is suppressed by using higher concentrations (2%) of CO_{2}, presumably due to further reaction of OWCO with CO_{2}. The lack of a clear candidate for the analogous products for Cr or Mo probably reflects the greater strength of the metal-metal bonding, present in such a complex, of tungsten. DFT calculations using the ADF 2.0.1 program confirm the presence of metal - metal bonding $\left(r_{\mathrm{W}-\mathrm{W}}=2.447 \AA\right)$ in this molecule and are presented in Table 7. The agreement between the calculated frequency and the experimentally observed frequency is reasonable for such a molecule.
$\mathrm{OCr}(\mathrm{CO})_{2}$. In the experiments run with chromium the CO stretching region contained a band at $1923.9 \mathrm{~cm}^{-1}$ which shifted to 1881.2 and $1878.9 \mathrm{~cm}^{-1}$ upon substitution with ${ }^{13} \mathrm{CO}_{2}$ and $\mathrm{C}^{18} \mathrm{O}_{2}$, respectively, confirming this band to be due to a CO stretching motion. Isotopic mixes involving ${ }^{12} \mathrm{CO}_{2} /{ }^{13} \mathrm{CO}_{2}$ revealed a triplet (1923.9, 1897.9, 1881.2), and those with $\mathrm{C}^{16} \mathrm{O}_{2} /$ $\mathrm{C}^{18} \mathrm{O}_{2}$ or $\mathrm{C}^{16} \mathrm{O}_{2} / \mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O} / \mathrm{C}^{18} \mathrm{O}_{2}$ also revealed isotopic triplets (1923.9, 1896.5, 1878.9) indicative of two equivalent CO groups. The CrO stretching mode of this molecule also proved
observable at $891.0 \mathrm{~cm}^{-1}$. Reaction with ${ }^{13} \mathrm{CO}_{2}$ resulted in little discernible shift, but reaction with $\mathrm{C}^{18} \mathrm{O}_{2}$ caused a shift to 853.8 cm^{-1}. This $16 / 18$ isotopic ratio (1.04357) is indicative of a CrO stretching mode. It is interesting to note the comparison of $16 / 18$ ratios between $\mathrm{CrO}(1.04533)$, $\mathrm{OCrCO}(1.04436)$ and $\mathrm{OCr}(\mathrm{CO})_{2}(1.04357)$ which reveal a slight decline as more substituents are added as would be expected with increasing antisymmetric $\mathrm{O}-\mathrm{M}-\mathrm{C}$ character from classical mechanical arguments. Reactions with $\mathrm{C}^{16} \mathrm{O}_{2} / \mathrm{C}^{18} \mathrm{O}_{2}$ or $\mathrm{C}^{16} \mathrm{O}_{2} / \mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O} /$ $\mathrm{C}^{18} \mathrm{O}_{2}$ revealed doublets, confirming the presence of exactly one oxygen atom bound to chromium. The feature proved too weak and broad to resolve chromium isotope splittings, but the comparison between the observed frequencies for this molecule and those calculated for $\mathrm{OCr}(\mathrm{CO})_{2}$ using the ADF 2.0.1 code, as detailed in Table 7, confirms the assignment of these bands to the $\mathrm{OCr}(\mathrm{CO})_{2}$ molecule.
$\mathbf{C r}\left(\boldsymbol{\eta}^{\mathbf{1}}-\mathbf{O C O}\right) . \mathrm{CO}_{2}$ complexes of transition metal atoms are of great interest, not only as models for reactions which take place on metal surfaces but also because studies of their modes of ligation act as guides to the biologically important photosynthesis process whose mechanism is still unclear. The four basic modes of ligation are $\eta^{1}-\mathrm{OCO}, \eta^{1}-\mathrm{CO}_{2}, \eta^{2}-\mathrm{OCO}$, and η^{2-} $\mathbf{O C O}$, where the atoms coordinated to the metal are indicated in bold. These modes of ligation can be distinguished by their infrared spectra. Bands are observed for this molecule both in the CO stretching region and also in the $750-650 \mathrm{~cm}^{-1}$ region. The lower frequency region enables definitive identification of the molecule. Bands at 721.0 and $716.1 \mathrm{~cm}^{-1}$ in experiments run with CO_{2} correspond to two sites of $\mathrm{Cr}\left(\mathrm{CO}_{2}\right)$ complex. These bands shift to 714.1 and $709.0 \mathrm{~cm}^{-1}$ upon reaction with ${ }^{13} \mathrm{CO}_{2}$ and 690.5 and $686.5 \mathrm{~cm}^{-1}$ upon reaction with $\mathrm{C}^{18} \mathrm{O}_{2}$. Comparison of these isotope ratios $\left(\nu_{12 / 13}=1.0097,1.0100\right.$;

Table 7. Calculated Geometries, Selected Frequencies, and Intensities of the $\mathrm{MO}, \mathrm{MO}_{2}, \mathrm{MCO}, \mathrm{OW}(\mu-\mathrm{CO})_{2} \mathrm{WO}, \mathrm{OCr}(\mathrm{CO})_{2}$, and $\mathrm{Cr}(\mu-\mathrm{O})(\mu-\mathrm{CO}) \mathrm{Cr}$ Molecules
(a) MO; ${ }^{5} \Sigma$ Ground State for $\mathrm{CrO} ;{ }^{3} \Sigma$ Ground State for WO; ${ }^{3} \Sigma$ Ground State for MoO Using Gaussian 94; ${ }^{5} \Pi$ Ground State for MoO Using ADF 2.0.1

${ }^{a}$ In an argon matrix; see ref $30 .{ }^{b}$ Run using BPW91 not BP86 owing to convergence problems. ${ }^{c}$ In a neon matrix; see: Hewett, W. D., Jr.; Newton, J. H.; Weltner, W., Jr. J. Phys. Chem. 1975, 79, 2640. ${ }^{d}$ In a krypton matrix; see ref 31.
$v_{16 / 18}=1.04417,1.04312$ for the two sites) with the calculated harmonic diatomic CO $\left(v_{12 / 13}=1.02280 ; v_{16 / 18}=1.02476\right)$, $\operatorname{CrC}\left(\nu_{12 / 13}=1.03280\right)$, and $\mathrm{CrO}\left(\nu_{16 / 18}=1.045\right.$ 51) ratios reveals this mode to comprise primarily a chromium-oxygen stretch. These isotope ratios rule out the possibility of the η^{1} CO_{2} and $\eta^{2}-\mathrm{OCO}$ modes of coordination as in each case there should be a greater shift on going from ${ }^{12} \mathrm{C}$ to ${ }^{13} \mathrm{C}$ than is observed. Reactions with mixed isotopes revealed a doublet for reactions run with either ${ }^{12} \mathrm{CO}_{2} /{ }^{13} \mathrm{CO}_{2}$ (721.0, 714.1 and $716.1,709.0$ for the two sites) or $\mathrm{C}^{16} \mathrm{O}_{2} / \mathrm{C}^{18} \mathrm{O}_{2}(721.0,690.5$ and 716.1, 686.5 for the two sites), but reaction with $\mathrm{C}^{16} \mathrm{O}_{2} /$ $\mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O} / \mathrm{C}^{18} \mathrm{O}_{2}$ revealed a quartet $(721.0,709.3,703.1,690.6$ and 716.1, 704.1, $698.8,686.5$ for the two sites) indicative of the presence of two inequivalent oxygen atoms, both of which must come from the same CO_{2} molecule. This isotopic pattern and $16 / 18$ isotope ratio confirm that the molecule is $\mathrm{Cr}\left(\eta^{1}-\mathrm{OCO}\right)$ and that the low-frequency bands correspond to a primarily $\mathrm{Cr}-\mathrm{O}$ stretching mode.

The only other bands observed for this molecule occur in the CO stretching region and are, as expected, more intense
than those in the $\mathrm{Cr}-\mathrm{O}$ stretching region. In principle two bands could be seen due to the symmetric and antisymmetric CO stretches; the symmetric stretch, however, proved too weak to be observed in these experiments. The bands in the CO region for the two sites were broad and overlapped, so the values quoted in Table 1 are only approximate. As can be seen comparison of the observed isotope ratios for the dominant site $\left(v_{12 / 13}=1.02407 ; \nu_{16 / 18}=1.02160\right)$ and the calculated harmonic diatomic values for $\operatorname{CO}\left(v_{12 / 13}=1.02280 ; v_{16 / 18}=\right.$ 1.02476), reveal this mode to be an antisymmetric CO stretching mode(greater carbon and lesser oxygen motion). Experiments run with ${ }^{12} \mathrm{CO}_{2} /{ }^{13} \mathrm{CO}_{2}$ or $\mathrm{C}^{16} \mathrm{O}_{2} / \mathrm{C}^{18} \mathrm{O}_{2}$ both showed appropriate doublets for the two sites, and experiments run with $\mathrm{C}^{16} \mathrm{O}_{2} /$ $\mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O} / \mathrm{C}^{18} \mathrm{O}_{2}$ showed extra components that were not fully resolvable for the weaker site but were partially resolvable, yielding the anticipated quartet (1735.6, 1732.3, 1702.7, 1698.9) for the dominant site. The yield of this complex was found to increase in experiments in which the chromium target was held a little further from the CsI window. The greater laser spot size results in less ionic species and more metal atoms, with

Table 8. Calculated Energies ($\mathrm{kJ} \mathrm{mol}^{-1}$) of Possible Reactions for the $\mathrm{M}+\mathrm{CO}_{2}$ Systems, where $\mathrm{M}=\mathrm{Cr}$, Mo, orW, Using Both the ADF 2.0.1 and Gaussian 94 Codes

	reaction	ΔE (ADF)			ΔE (Gaussian)		
		Cr	Mo	W	Cr	Mo	W
(1)	$\mathrm{M}+\mathrm{CO}_{2} \rightarrow \mathrm{OMCO}$	-14.1	-301.6	-228.3	+6.5	-286.3	-347.6
(2)	$\mathrm{M}+2 \mathrm{CO}_{2} \rightarrow \mathrm{O}_{2} \mathrm{M}(\mathrm{CO})_{2}$	-186.9	-548.2	-431.3		-505.1	-665.7
(3)	$\mathrm{OMCO} \rightarrow \mathrm{MO}+\mathrm{CO}$	+208.4	+188.0	+105.9	+212.6	+282.2	
(4)	$\mathrm{O}_{2} \mathrm{M}(\mathrm{CO})_{2} \rightarrow \mathrm{O}_{2} \mathrm{MCO}+\mathrm{CO}$	+162.3	+197.6	+173.5		+198.0	+380.4
(5)	$\mathrm{OMCO}+\mathrm{CO}_{2} \rightarrow \mathrm{O}_{2} \mathrm{MCO}+\mathrm{CO}$	-10.5	-49.0	-29.7	99.9	-26.9	-81.8
(6)	$\mathrm{M}+\mathrm{CO}_{2} \rightarrow \mathrm{MO}+\mathrm{CO}$	+194.0	-113.6	-122.2	+219.1	-4.1	
(7)	$\mathrm{OMCO}+\mathrm{CO}_{2} \rightarrow \mathrm{O}_{2} \mathrm{M}(\mathrm{CO})_{2}$	-172.9	-246.6	-203.2		-218.8	-318.1
(8)	$\mathrm{O}_{2} \mathrm{MCO} \rightarrow \mathrm{MO}_{2}+\mathrm{CO}$	+130.7	+150.6	+88.7	+48.6	+166.2	+184.2
(9)	$\mathrm{O}_{2} \mathrm{Cr}(\mathrm{CO})_{2} \rightarrow \mathrm{OCr}(\mathrm{CO})_{2}+\mathrm{O}$	+693.6					
(10)	$\mathrm{Cr}+\mathrm{O}_{2} \mathrm{Cr}(\mathrm{CO})_{2} \rightarrow \mathrm{OCr}(\mathrm{CO})_{2}+\mathrm{CrO}$	+263.5					
(11)	$2 \mathrm{OWCO} \rightarrow \mathrm{OW}(\mu-\mathrm{CO})_{2} \mathrm{WO}$			-155.8			
(12)	$\mathrm{OCrCO}+\mathrm{Cr} \rightarrow \mathrm{Cr}(\mu-\mathrm{O})(\mu-\mathrm{CO}) \mathrm{Cr}$	-188.6					

less excess electronic energy being present in the gas phase. These effects coupled to the decreased brightness of the laser plume have hence been shown to favor complex formation over direct insertion of Cr into CO_{2}.

These findings are in excellent agreement with a previous theoretical study on the interaction between Cr and $\mathrm{CO}_{2}{ }^{11}$ which showed the lowest energy complex (and indeed the only complex to be stable with respect to disproportionation to Cr and CO_{2}) to be the $\mathrm{Cr}\left(\eta^{1}-\mathrm{OCO}\right)$ molecule with a $\mathrm{Cr}-\mathrm{O}$ bond length of $1.92 \AA$. Attempts to calculate this complex resulted in convergence problems.

Perhaps of greatest interest is the dramatic photochemistry that this molecule displays. Broad band UV-photolysis with a 175 W lamp for $20-30 \mathrm{~min}$ results in almost complete destruction of the complex with a concomitant growth in the features due to the insertion product OCrCO . This is, we believe, the first observation of a well-characterized photoinduced insertion of a transition metal atom into carbon dioxide. The use of photolysis to activate CO_{2} is of enormous potential significance in the development of CO_{2} as an alternative to petroleum as a starting material for fine chemical synthesis. Studies of the preferred mode of ligation of CO_{2} to metal centers may also lend further credence to the hypothesis that the CO_{2} used in photosynthesis is polarized due to formation of an η^{1} OCO complex to the active enzyme ribulose diphosphate carboxylase prior to attack by the enolate anion of the sugar. ${ }^{34}$

Other Bands. In the $\mathrm{Cr} / \mathrm{CO}_{2}$ experiments additional bands were observed in both the bridging CO and $\mathrm{Cr}-\mathrm{O}$ single bond regions. Upon higher temperature annealings, these two bands, which exhibited the same relative intensities under all conditions, were observed to grow at 1773.8 and $785.0 \mathrm{~cm}^{-1}$ in the reactions of Cr with CO_{2}, but were not present in reactions run with Cr and CO. These bands shifted to 1736.8 and $783.4 \mathrm{~cm}^{-1}$ upon reaction with ${ }^{13} \mathrm{CO}_{2}$ and 1737.2 and $746.7 \mathrm{~cm}^{-1}$ upon reaction with $\mathrm{C}^{18} \mathrm{O}_{2}$. The mode at higher frequency exhibits isotope $\operatorname{ratios}\left(v_{12 / 13}=1.02130 ; v_{16 / 18}=1.02106\right)$ indicative of a CO stretching mode. The lower frequency band has a much higher than diatomic $16 / 18$ isotopic ratio $\left(\nu_{16 / 18}=1.05129 ; c f .1 .04549\right.$ calculated diatomic harmonic value). Reaction with $\mathrm{CO}_{2} /^{13-}$ CO_{2} mixtures result in appropriate isotopic doublets (1773.8, 1736.8 and $785.0,783.4$) as do reactions with either $\mathrm{C}^{16} \mathrm{O}_{2} /$ $\mathrm{C}^{18} \mathrm{O}_{2}$ or $\mathrm{C}^{16} \mathrm{O}_{2} / \mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O} / \mathrm{C}^{18} \mathrm{O}_{2}(1773.8,1737.2$ and 785.0 , 746.7). The high $16 / 18$ isotopic ratio for the lower frequency band is indicative either of a MO_{2} symmetric stretch, which can be conclusively ruled out as this band would become a triplet in reactions run with $\mathrm{C}^{16} \mathrm{O}_{2} / \mathrm{C}^{18} \mathrm{O}_{2}$ and have an associated antisymmetric mode of greater intensity, or of an antisymmetric CrOCr stretch. The latter is totally consistent with the band positions, isotope shifts, and isotopic patterns displayed. The
spectroscopic observations strongly imply that the molecule responsible for these absorptions is $\mathrm{Cr}(\mu-\mathrm{O})(\mu-\mathrm{CO}) \mathrm{Cr}$. The molecule is almost certainly formed by reaction of Cr with OCrCO as the bands due to OCrCO are observed to diminish upon higher annealings as the bands due to this molecule grow. The small shift in the frequency of the lower frequency band upon substitution with ${ }^{13} \mathrm{C}$ provides further confirmation of the validity of the assignment as the CrOCr stretch is expected to couple with the CrCCr stretch in such a molecule, resulting in a shift on the order of that observed. Attempts to calculate this molecule using Gaussian met with convergence problems, but the results of the ADF calculations are presented in Table 7. The agreement between theory and experiment is only moderate, with calculations seemingly overplaying the donation of electron density into the $\mathrm{CO} \Pi^{*}$ orbitals at the expense of the $\mathrm{Cr}-\mathrm{O}$ bonding. The calculations reveal no $\mathrm{Cr}-\mathrm{Cr}$ bonding ($r_{\mathrm{CrCr}}=$ 2.755) in this complex.

Reaction Mechanisms and Periodic Trends

A summary of the calculated energetics of reaction for some of the possible reactions between Cr, Mo, and W and CO_{2} is presented in Table 8. As can be seen insertion of the metal into CO_{2} is an exothermic process for Mo and W (eq 1), as indeed is further reaction with another CO_{2} molecule (eq 2 and 7) for all three metals. Reaction of Cr with CO_{2} is calculated to be either slightly exothermic or slightly endothermic depending on the theoretical method chosen. Several effects are apparent upon comparing the energetics of the various product molecules from the reactions of Cr, Mo, and W with CO_{2}. Firstly the increased strength of the $\mathrm{M}-\mathrm{O}$ bond on descending the group is reflected in the calculated energies. This lower bond strength for chromium-containing species coupled to the loss of exchange energy and large pairing energy terms that such products suffer contribute toward a general increased endothermicity of reactions involving gaseous Cr . For example, the reaction of M with CO_{2} to give MO and CO (eq 6) is calculated by ADF to be exothermic for both W and Mo, but endothermic for Cr . That molecules such as CrO are observed attests to the excess energy that laser-ablated metal atoms possess. ${ }^{36}$

Both theoretical methods chosen were in close agreement with the observed values and the isotope ratios calculated using the Gaussian 94 code, and those observed experimentally confirmed that these calculations are able to accurately predict the mechanics of vibration for such molecules. Generally few problems were encountered for the calculations involving Mo and W using either code, and the results obtained by the two methods are strikingly similar (see Tables 4-7). Calculations

[^6]involving chromium proved more problematical, especially when the Gaussian 94 code was used, where severe convergence problems were often encountered. Even when the calculations did not prove very accurate their predicted trends were generally still correct. For instance, both ADF 2.0.1 and Gaussian 94 consistently overestimated the $\mathrm{Cr}-\mathrm{O}$ stretching frequencies, but the observed trend of increased frequency from CrO_{2} to $\mathrm{O}_{2}-$ CrCO to $\mathrm{O}_{2} \mathrm{Cr}(\mathrm{CO})_{2}$ was indeed correctly anticipated by ADF. Generally the calculations using Gaussian 94 proved more convenient as the program allows facile determination of the effects of isotopic substitution, but for calculations involving chromium or larger molecules such as $\mathrm{OW}(\mu-\mathrm{CO})_{2} \mathrm{WO}$, as well as the diatomic WO, where the calculations within Gaussian 94 encountered severe convergence problems, ADF 2.0.1 proved the method of choice.

Comparing the molecules MO and OMCO, it can be seen that the $\mathrm{W}-\mathrm{O}$ stretching frequency is greater than the $\mathrm{Mo}-\mathrm{O}$ stretching frequency which is in turn greater than the $\mathrm{Cr}-\mathrm{O}$ stretching frequency for both molecules. Relativistic effects for tungsten are anticipated to be of importance ${ }^{37}$ and should result in a greater spatial extension, and hence better overlap, of the $5 d$ orbitals of tungsten relative to the 4 d orbitals of molybdenum and can thus be used to explain why the WO stretching frequencies are higher than the MoO stretching frequencies for all these molecules. The synergic nature of the bonding with CO coupled to the different ground state multiplicities of the $\mathrm{MCO}, \mathrm{MO}$, and OMCO as well as the $\mathrm{MO}_{2}, \mathrm{O}_{2} \mathrm{MCO}$, and

[^7]$\mathrm{O}_{2} \mathrm{M}(\mathrm{CO})_{2}$ series precludes sweeping generalizations about their behaviors upon changing the metal M. Nevertheless, chromium is much less able to back-bond with CO than the other two metals (reflected in a greater v_{CO} for all complexes with $\mathrm{M}=$ Cr) due in part to the contracted nature, and hence poor overlap, of its 3d orbitals and its preference for high spin states owing to a relatively large pairing energy term. The tungsten compounds generally showed the greatest extent of backbonding with CO , with one notable exception, OMCO, for which molybdenum had the lower CO stretching frequency.

Conclusion

Reaction of laser-ablated group 6 atoms with CO_{2} gives rise to a variety of products, including the insertion products OMCO and $\mathrm{O}_{2} \mathrm{M}(\mathrm{CO})_{2}$. Chromium reacts with CO_{2} to form a $\mathrm{Cr}\left(\eta^{1}-\right.$ OCO) complex which undergoes photoinduced isomerization to give OCrCO . Isotopic substitution has allowed definitive spectral identification of these molecules. Theoretical calculations have been used to lend support to these assignments; two DFT-based methods were employed, one using the Gaussian 94 code and the other ADF 2.0.1. Both methods gave results in excellent agreement with the spectroscopic observations, further confirming their validity in the prediction of the frequencies of compounds containing transition metals.

Acknowledgment. The authors thank M. Neurock and E. J. Baerends for use of the ADF code.

JA971038N

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, July 15, 1997.
 (1) Ibers, J. A. Chem. Soc. Rev. 1982, 11, 57.
 (2) Creutz, C. In Electrochemical and Electrocatalytic Reactions of Carbon Dioxide; eds. Sullivan, B. P., Krist, K., Guard, H. E., Eds.; Elsevier: Amsterdam, 1993; Chapter 2.
 (3) Arreseta, M.; Quarntana, E.; Tommasi, I. New J. Chem. 1994, 18, 133.
 (4) Gibson, D. H. Chem. Rev. 1996, 96, 2063.
 (5) Halmann, M. M. Chemical Fixation of Carbon Dioxide. Methods for Recycling CO_{2} into Useful Products; CRC Press: Boca Raton, FL, 1993. (6) See for example, Cutler, A. R.; Hanna, P. K.; Vites, J. C. Chem. Rev. 1988, 88, 1363.
 (7) Kafafi, Z. H.; Hauge, R. H.; Billups, W. E.; Margrave, J. L. J. Am. Chem. Soc. 1983, 105, 3886.
 (8) Kafafi, Z. H.; Hauge, R. H.; Billups, W. E.; Margrave, J. L. Inorg. Chem. 1984, 23, 177.
 (9) LeQuere, A. M.; Xu, C.; Manceron, L. J. Phys. Chem. 1991, 95, 3031.
 (10) Mascetti, J.; Tranquille, M. J. Phys. Chem. 1988, 92, 2177.
 (11) Yeung, G. H. Mol. Phys. 1988, 65, 669.
 (12) Burkholder, T. R.; Andrews, L. J. Phys. Chem. 1993, 97, 3500.
 (13) Tague, T. J., Jr.; Andrews, L.; Hunt, R. D. J. Phys. Chem. 1993, 97, 10920.
 (14) Chertihin, G. V.; Andrews, L. J. Am. Chem. Soc. 1995, 117, 1595.
 (15) Andrews, L.; Tague, T. J., Jr. J. Am. Chem. Soc. 1994, 116, 6856.

[^1]: (16) Souter, P. F.; Andrews, L. Chem. Commun. 1997, 777.
 (17) Burkholder, T. R.; Andrews, L. J. Chem. Phys. 1991, 95, 8697.
 (18) Souter, P. F.; Kushto, G. P.; Andrews, L.; Neurock, M. J. Am. Chem. Soc. 1997, 119, 1682.
 (19) ADF 2.0.1, Theoretical Chemistry, Vrije Universiteit, Amsterdam.

[^2]: (24) The band observed in ref 10 at $960 \mathrm{~cm}^{-1}$, tentatively assigned to a CO_{2} reaction product, occurs at very nearly the same energy as the antisymmetric stretch of CrO_{2} (Chertihin, G. V.; Bare, W. D.; Andrews, L. J. Chem. Phys., in press), an almost inevitable impurity in a reaction involving thermally generated chromium atoms. With no isotopic data and no associated carbonyl stretches, this band is most likely due to CrO_{2} in a CO_{2} matrix.

[^3]: (25) Poliakoff, M.; Smith, K. P; Turner, J. J.; Wilkinson, A. J. J. Chem. Soc., Dalton Trans. 1982, 651.
 (26) Crayston, J. A.; Almond, M. J.; Downs, A. J.; Poliakoff, M.; Turner, J. J. Inorg. Chem. 1984, 23, 3051.
 (27) Almond,M. J.; Crayston, J. A.; Downs, A. J.; Poliakoff, M.; Turner, J. J. Inorg. Chem. 1986, 25, 19.
 (28) Almond,M. J.; Downs, A. J. J. Chem. Soc., Dalton Trans. 1988, 809.

[^4]: (29) Devore, T. C.; Gole, J. L. Chem. Phys. 1989, 133, 95.
 (30) Bates, J. K.; Gruen, D. M. J. Mol. Spectrosc. 1979, 78, 284.
 (31) Green, D. W.; Ervin, K. M. J. Mol. Spectrosc. 1981, 89, 145.

[^5]: (32) Hocking, W. H.; Merer, A. J.; Milton, D. J.; Jones, W. E.; Krishmanurth, G. Can. J. Phys. 1980, 58, 516.
 (33) Chertihin, G. V.; Bare, W. D.; Andrews, L. J. Chem. Phys., in press.
 (34) Bach, S. B. H.; Taylor, C. A.; Van Zee, R. J.; Vala, M. T.; Weltner, W., Jr. J. Am. Chem. Soc. 1986, 108, 7104.
 (35) See for example: Crabtree, R. H. The Organometallic Chemistry of the Transition Elements, 2nd ed.; Wiley-Interscience 1994; p 318.

[^6]: (36) Kang, H.; Beauchamp, J. L. J. Phys. Chem. 1985, 89, 3364.

[^7]: (37) Pyykkö, P. Chem. Rev. 1988, 88, 563.

